Monatshefte für Chemie 99, 877-883 (1968)

Die Kristallstruktur von Ir₄Ge₅*

Von

G. Flieher, H. Völlenkle und H. Nowotny

Aus dem Institut für physikalische Chemie der Universität Wien

Mit 1 Abbildung

(Eingegangen am 19. Januar 1968)

Mittels Fourier- und Differenz-Fourier-Synthesen wird eine Struktur für Ir₄Ge₅ errechnet. Der Aufbau, der einem Abkömmling des TiSi₂-Typs mit starkem Unterschuß des *B*-Elements entspricht, ist durch Stapelung in Richtung der *c*-Achse gemäß n = 4charakterisiert **.

By means of Fourier- and difference Fourier-synthesis a crystal structure for Ir_4Ge_5 was calculated. The crystal structure of Ir_4Ge_5 , a derivative of the TiSi₂-type structure with a strong deficiency of the *B*-element, is characterized by a 4-fold stacking of the subcell in the c-direction**.

Einleitung

Die Phase Ir₄Ge₅ wird erstmals von *Bhan* und *Schubert*¹ beschrieben; aus Einkristallaufnahmen wird eine tetragonale Elementarzelle mit folgenden Abmessungen ermittelt: a = 5,64 und c = 18,24 Å. In der Folge ließ sich diese Phase in eine Gruppe von Verbindungen der allgemeinen Formel $T_n B_{2n-m}$ einordnen². Diese Verbindungen leiten sich vom TiSi₂-Typ ab und zeigen eine charakteristische Abhängigkeit von der Valenzelektronenkonzentration. Verfeinerte Strukturbestimmungen liegen für folgende Vertreter dieser Gruppe vor [in Klammer ist der Quotient (2 n-m)/n angegeben]: $V_{17}Ge_{31}$ $(1,823)^3$, $Mo_{13}Ge_{23}$ $(1,769)^3$, $Mn_{15}Si_{26}$

Monatshefte für Chemie, Bd. 99/3

^{*} Herrn Professor Dr. J. W. Breitenbach zum 60. Geburtstag gewidmet.

^{**} B-Element des Periodensystems der chemischen Elemente.

¹ S. Bhan und K. Schubert, Z. Metallkde. 51, 327 (1960).

² H. Völlenkle, A. Wittmann und H. Nowotny, Mh. Chem. 97, 506 (1966).

³ H. Völlenkle, A. Preisinger, H. Nowotny und A. Wittmann, Z. Kristallogr. 124, 9 (1967).

 $(1,733)^4$, $Mn_{11}Si_{19}$ $(1,727)^5$, $Cr_{11}Ge_{19}$ $(1,727)^3$, $Rh_{10}Ga_{17}$ $(1,700)^6$, Ir_3Ga_5 $(1,667)^6$, Ru_2Sn_3 $(1,500)^7$ und $Rh_{17}Ge_{22}$ $(1,294)^8$. Von den bekannten Verbindungen dieser Gruppe zeigt Ir_4Ge_5 den stärksten Unterschuß an *B*-Element hinsichtlich der Zusammensetzung des TiSi₂-Typs, weshalb der Kristallstruktur dieser Verbindung erhöhtes Interesse zukommt.

Experimenteller Teil

Die Phase Ir_4Ge_5 wurde durch Schmelzen wie auch durch Sintern der Komponenten und anschließendes Glühen bei 1000° C (20 Stdn.) erhalten.

Röntgenographische Untersuchungen

Aus den so hergestellten Legierungen ließen sich Einkristalle isolieren. Weissenberg-Aufnahmen um [100] und [110] bestätigen die von Bhan und Schubert¹ angegebene tetragonale Zelle. Neben der ausgeprägten Unterzelle (c = 4 c') zeigen jedoch die sogenannten Überstrukturreflexe bei großen θ-Werten eine Besonderheit, indem ein Teil diffuses Aussehen - keine α_1 — α_2 -Aufspaltung — besitzt, während der andere Teil die α_1 — α_2 -Aufspaltung erkennen läßt. Die Schwerpunkte der diffusen Reflexe weichen zudem geringfügig von den entsprechenden Zonenkurven der Überstrukturreflexe ab. Eine ausreichende Deutung dieser Erscheinung kann nicht gegeben werden; sie ist nicht allein in einer merklich höheren Vervielfachung als n = 4 zu suchen. Der diffuse Charakter ist ein Hinweis auf die mögliche Existenz einer Domänenbildung. Man darf annehmen, daß verschiedene n-Werte, die näherungsweise durch eine Vervierfachung der Unterzelle ausgedrückt werden können, vorliegen. Die geringen energetischen Unterschiede werden durch eine Verzerrungsenergie kompensiert. Im folgenden wurde jedoch n = 4 zugrunde gelegt, zumal eine Berücksichtigung der komplexen Struktur außerhalb der Möglichkeiten einer zweidimensionalen Fourier-Synthese zu liegen scheint.

Die aus Pulveraufnahmen (Tab. 1) ermittelten Gitterparameter ergaben sich zu:

a = 5,615 Å c = 18,308 Å c' = 4,577 Åc'/a = 0,815

in befriedigender Übereinstimmung mit den Angaben von Bhan und Schubert. Die Auslöschungen führen auf die Raumgruppe P4c2— D_{2d}^6 , die auch auf Grund der Formelindizes für eine Verbindung dieser Gruppe zu erwarten war.

Die Intensitäten der Weissenberg-Aufnahmen (Äquator [100]) wurden durch visuellen Vergleich mit einer Eichskala bestimmt und wie üblich auf

⁴ G. Flieher, H. Völlenkle und H. Nowotny, Mh. Chem. 98, 2173 (1967).

⁵ O. Schwomma, A. Preisinger, H. Nowotny und A. Wittmann, Mh. Chem. 95, 1527 (1964).

⁶ H. Völlenkle, A. Wittmann und H. Nowotny, Mh. Chem. 98, 176 (1967).

⁷ O. Schwomma, H. Nowotny und A. Wittmann, Mh. Chem. 95, 1537 (1964).

⁸ W. Jeitschko und E. Parthé, Acta cryst. 22, 417 (1967).

(hkl)	$10^3 \cdot \sin^2 heta$ ber.	$10^3 \cdot \sin^2 \theta$ gem.	$I_{ber.}$	$I_{\text{gesch.}}$
(104)	47,2	47,2	86	sst
(200)	75,5	75,5	34	\mathbf{mst}
(115)	82,0	82,6	23	\mathbf{m}
(211)	96,0	96,0	12	\mathbf{ms}
(214)	122.6	122.6	100	\mathbf{sst}
(206)	139,2	139,1	3	SS
(220)	150.8)		40)	
(118)	151.2	151,4	54	\mathbf{sst}
(216)	158.1	158.3	6΄	8
$(00\ 10)$	177.3	177.9	7	s
(304)	198.0	198.4	35	mst
(30.6)	233.5)	233.6	5)	
(219)	237.9	237.9	3	$\mathbf{s.d}$
(324)	273.4)	201,0	10	
(1012)	274.2	273,8		\mathbf{ms}
(40.0)	301.6)		9)	
(31.8)	301.9	301,4	28	\mathbf{mst}
(22.10)	328.1	328 4	4	8
(414)	348.8)	020,1	12)	5
(21.12)	349.6	348,8	11	m
(42.0)	377.0	377 3	15	me
(30.12)	425.0	425.2	5	a 1113
(33.8)	452 7	452 1	12	a me
(50.6)	409 7)	402,1	3)	111.5
(43.4)	400 7	500.0	11	770
(32.19)	500.4	000,0	11	111
(32.12) (30.14)	517 9	518 5	1) 2	aa
(90.14)	590.3	590 7	5	66
(2010)	526.0	525,7	4	8
(51 14)	575 0	555,6	4 10)	88
(024)	575.0	575,7	10	ms
(41.12)	070,0j 602.0)		1)	
(440) (510)	003,2	603, 5	3	\mathbf{m}
(01.8)	003,0j		10]	
(020)	010,0	610,8		ss. d
(11 18) (41 14)	012,2)		2)	
(41 14)	008,0	668,5		$\mathbf{ss.d}$
(21 18)	008,1	670 A	2)	<i>a</i>
(000)	018,0	078,4	0	s
(014)	729,8	7000		
(00.12)	720,0	720,2	2	ms
(43 12) (62 0)	720,0)		57	
(02.0)	754,4		6	
(00 8) (10 19)	704,87	794,9	11	m
(40 10) (54 4)	755,87		51	
(044) (5949)	801,2	801,6	2)	m
(0212)	801,9]	000 0	_9]	
(4Z 10)	830,9	830,0	11	\mathbf{ms}

Tabelle 1. Auswertung einer Pulveraufnahme von $\rm Ir_4Ge_5$ (CuKa-Strahlung)

(hkl)	$10^3 \cdot \sin^2 \theta$ ber.	$10^3 \cdot \sin^2 \theta_{\text{gem.}}$	Iber.	$I_{\text{gesch.}}$
(60 10)	855,9	856,2	3	ss
(61 10)	874,8)		2]	
(634)	876,6	876,2	14	m
(3020)	878,9)		3)	
(52.14)	894,2)	904 8	3)	~~
(41 18)	894,9	894,0	3∫	88
(63 6)	912,1j	019.1	1j	~
(3318)	913,8	915,1	5)	s
(704)	952,0j		8j	
(3220)	952,3	059.1	7	mat
$(21\ 22)$	952,4	902,1	4∫	mst
$(61\ 12)$	952,8]		12]	
(640)	980,2	980,2	36	\mathbf{mst}

Tabelle 1 (Fortsetzung)

Tabelle 2. Punktlagen und Atomparameter für Ir4Ge5

Atom	Punktlage	x	y	z
Ir (1)	2 (e)	0	0	0
Ir(2)	2 (a)	0	0	0,25
Ir (3)	4 (h)	0,5	0,5	0,1357
Tr(4)	4 (i)	0	0,5	0,0553
Tr(5)	4 (i)	0	0,5	0,3176
Ge(1)	4 (e)	0.314	0.314	0,25
$\operatorname{Ge}(2)$	8 (i)	0.332	0,1988	0,0511
$\operatorname{Ge}(3)$	8 (j)	0,8486	0,2818	0,1490

Lorentz-Polarisations-Faktoren korrigiert; eine Absorptionskorrektur erfolgte durch zonenweises Einsetzen empirisch ermittelter Faktoren von 0.8bis 1.25 für die F_0 -Werte.

Bestimmung und Diskussion der Kristallstruktur

Mit Hilfe des allgemeinen Bauprinzips der oben genannten Verbindungsklasse gelingt es leicht, einen Strukturvorschlag für ein Iridiumgermanid gemäß n = 4 aufzustellen. Im Gegensatz zu den bekannten Verbindungen, wie z. B. Rh₁₀Ga₁₇ oder Ir₃Ga₅, erweist sich jedoch der Strukturvorschlag für Ir₄Ge₅ mit einem *R*-Wert* von etwa 0,40 für 51 F(0kl)-Reflexe nur als grobe Näherung.

Mit Hilfe von Fourier-Projektionen auf θyz konnten die freien Parameter bis auf einen *R*-Wert von 0,103 verfeinert werden (Tab. 2 und 3). Dabei zeigte sich, daß insbesondere die Iridiumatome bis zu 0,2 Å aus den Idealpositionen verschoben sind, eine Erscheinung, die mit dem starken Ge-Unterschuß — entsprechend IrGe_{2-x} ist $x = \frac{3}{4}$ — zusammenhängen dürfte.

*
$$R = \left(\Sigma \left| \left| F_{\mathbf{0}} \right| - \left| F_{\mathbf{c}} \right| \right| \right) / \Sigma \left| F_{\mathbf{0}} \right|$$

H. 3/1968]

Eine mit den verfeinerten Parametern berechnete Fourier-Projektion auf (θyz) ist in Abb. 1 a wiedergegeben. Wie aus einem Vergleich mit der in Abb. 1 b dargestellten F_c -Synthese hervorgeht, handelt es sich bei den

Abb. 1. Absolute Fourierprojektionen auf die (100)-Ebene für Ir_4Ge_5 mit den beobachteten F-Werten (a) und mit den berechneten F-Werten (b); die Höhenschichtlinien sind in Abständen von $20e/Å^2$ eingezeichnet, beginnend mit $20e/Å^2$.

Deformationen der durch die Elektronendichte-Projektionen wiedergegebenen Atome in erster Linie um Effekte, die mit dem Abbruch der Fourier-Reihe zu erklären sind.

$0kl F_0 $	$ F_c $	0kl	$ F_0 $	$ F_c $	0kl	$ F_0 $	$ F_c $
(00 2) —	7	(024)		20	(048)	163	133
(004) —	15	(02 6)	184	194	(0410)	178	188
(00 6) 185	182	(028)	75	66	(0412)	140	134
(008) —	8	$(02\ 10)$	53	32	(0414)		3
(00 10) 695	721	$(02\ 12)$		70	(04 16)	461	510
(00 12) —	33	$(02\ 14)$		· 4	(0418)	62	97
(00 14) —	26	$(02\ 16)$	555	-546	$(05\ 0)$	—	88
(00 16) 712	614	(0218)		47	$(05\ 2)$	166	134
(00 18)		(0220)		28	(05 4)	354	424
(00 20) 444	462	(0222)	328	341	$(05\ 6)$	79	70
(00 22) 347	354	(03 0)		67	(058)	77	69
(010) —	22	(032)		67	(0510)	165	214
(012) —	55	(034)	885	891	$(05\ 12)$	263	351
(014) 529	615	(036)	337	360	(0514)	185	124
(016) —	54	(03 8)		85	(05 16)	<u> </u>	108
(018) —	58	(0310)	162	121	(06 0)	783	840
(01 10) 208	212	$(03\ 12)$	506	499	$(06\ 2)$	101	122
(01 12) 502	533	(03 14)	371	381	(064)		59
(01 14) 106	112	(0316)	226	266	$(06\ 6)$	63	72
(0116) 78	73	(0318)	156	182	(068)	123	86
(01 18) 344	264	(0320)	325	340	(0610)	295	319
(01 20) 304	297	(040)	764	813	(0612)	103	85
(01 22) 270	211	(042)	216	152	(07 0)		
(02 0) 667	708	(044)		20	(072)	136	78
(02.2) 63	77	(046)	189	150	(07 4)	401	387
•					(076)		69

Tabelle 3. Vergleich der beobachteten und berechneten Strukturamplituden

Tabelle 4. Interatomare Abstände (< 3,3 Å) in Ir_4Ge_5

	Abstand [Å]	Anzahl der Abstände		Abstand [Å]	Anzahl der Abstände
$\operatorname{Ir}(1) \longrightarrow \operatorname{Ir}(4)$	2,983	4	Ir(1) - Ge(2)	2,365	4
$\operatorname{Ir}(2) - \operatorname{Ir}(5)$	3,068	4	-Ge(3)	3,274	4
Ir(3) - Ir(4)	3,170	2	Ir(2) - Ge(1)	2,491	2
$-\mathbf{Ir}(5)$	2,933	2	$- \operatorname{Ge}(3)$	2,582	4
$\operatorname{Ir}(4) - \operatorname{Ir}(1)$	2,983	2	Ir(3) - Ge(1)	2,567	2
$-\mathrm{Ir}(3)$	3,170	2	Ge(2)	2,482	2
Ir(5) - Ir(2)	3,068	2	Ge(3)	2,320	2
$-\mathrm{Ir}(3)$	2,933	2	Ir(4) - Ge(2)	2,516	2
()			Ge(2)	2,441	2
			Ge(3)	2,277	2
			Ir(5) - Ge(1)	2,395	2
			Ge(2)	2,821	2
			Ge(3)	2,589	2

H. 3/1968]

Tab. 4 enthält die interatomaren Abstände für die Koordination der Iridiumatome. Die Umgebung dieser Atome weist im Mittel 6 Ge- und 4 Ir-Atome auf, mit einem mittleren Abstand Ir—Ir = 3,038 Å und Ir—Ge = = 2,519 Å. Für die gleichen Koordinationszahlen ergaben sich für Rh₁₇Ge₂₂ (RhGe_{1,294}) die Abstände Rh—Rh = 3,033 und Rh—Ge = 2,504 Å.

Herrn Doz. Dr. A. Wittmann danken wir für seine Hilfsbereitschaft, dem U. S. Government für die teilweise Unterstützung dieser Arbeit.

Die Rechnungen wurden am Institut für numerische Mathematik der Techn. Hochschule Wien durchgeführt, wofür wir Herrn Prof. Dr. *H. Stetter* zu Dank verpflichtet sind.